Weak Krull–Schmidt theorem and direct sum decompositions of serial modules of finite Goldie dimension
نویسندگان
چکیده
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولDirect-sum decompositions of modules with semilocal endomorphism rings
Let R be a ring and C a class of right R-modules closed under finite direct sums. If we suppose that C has a set of representatives, that is, a set V(C) ⊆ C such that every M ∈ C is isomorphic to a unique element [M ] ∈ V(C), then we can view V(C) as a monoid, with the monoid operation [M1] + [M2] = [M1 ⊕M2]. Recent developments in the theory of commutative monoids (e.g., [4], [15]) suggest tha...
متن کاملOn the Goldie Dimension of Hereditary Rings and Modules
We find a bound for the Goldie dimension of hereditary modules in terms of the cardinality of the generator sets of its quasi-injective hull. Several consequences are deduced. In particular, it is shown that every right hereditary module with countably generated quasi-injective hull is noetherian. Or that every right hereditary ring with finitely generated injective hull is artinian, thus answe...
متن کاملSingularities and Direct-sum Decompositions
Let (R; m;k) be a local ring (commutative and Noetherian). We will discuss existence and uniqueness of direct-sum decompositions of nitely generated R-modules. One says that R has nite CM type provided there are only nitely many indecomposable maximal Cohen-Macaulay R-modules up to isomorphism. Among complete equicharacteristic hypersurface rings with k algebraically closed of characteristic 6 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2004
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2004.06.027